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l.Introduction

Our Institute could develop in 1977 a block ad justment program by
least sqQuares and independent models(3),which was able to handle rela-
tively irregular blocks .

Later,in 1978,a second program(4)based on Anblock formulation and
Gauss Seidel procedure suitable for blocks of arbitrary shape and over-—
lap was completed. The main feature of this program was that the solved
system was that of the Reduced Normal Equations and not that of the Nor-
mal Equations as it is the case in the solutions given by Créhange (An-—
block) and Masson d'Autum (Bundles) demoribed in (1) and (6). The conven
gence was good:Starting with good approximate values (previous strip
formation),less than 5 iterations were enoughjstarting with approximate
values sensibly worse than those obtained with strip formation,10 itera-
tions sufficedjstarting with arbitrary approximate values (all of them
equal to zero,for instance),40 iterations were needed. With too scarce
ground control the mumber of iterations was somewhat greater .-

Finally in july 1979 a program sui¥able for large arbitrary blocks
and small computers based on a direct solution of the reduced normal
equations could be completed. This program,whose name is COBLO (for Com-
pensacidén en Bloque ),is based on the Anblock solution with iterations
between planimetry and altimetry and it will be described in this paper.

2.Employed Algorithm

The mathematical treatment for the planimetry is that of Anblock as
pregented in (1). For the altimetry similar formulas were developed by
the author.

2.1, Formation of the Reduced Normal Equations

The block of Fig.l will give rise to a normal equations system(Fig.
2). Starting from this system one can obtain the so called "reduced
normal equations system “§ Fig.3 shows this system for the case in
which the vector Xx containing the unknown point coordinates has been
eliminated and the models have been mumbered according to flight direc—
tion(the vector Xt in normal equations will be called simply X in the
reduced normal equations system ).

In Pig.3,the submatrixes N will be of 4 by 4 in planimetry and of
3 by 3 in altimetry,and the subvectors X1, X2, etc., which contain the
orientatation parameters of models,will be of 4 by 1 in planimetry and
3 by 1l in altimetry . The independent terms vector R is also subdivided
inte subveotors Rls.....;R5, in the same way.

The formation of the reduced normal equations imi done in the fol-
lowing way

The program takes a points;establishes the models to which it be=
longs and computes the contributions to the corresponding submatrixes.
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The point 303, for instance, contributes to form submatrixes Ni3j,
N12, N14, W15, N22, N24, N25,5 N44s Ng5, N55, Only one of these subma~

trixes is in core memory. Once the contribution is computed, it is

transfered to external storage. The same process is repeated for all
the unknown points participating in the ad justment and their contribu~
tions are added to the already stored ones.

2.2+ Solution of the Reduced Normal Equations

We shall consider the block of Fig.4, which gives rise to the re-
duced normal equations system represented in Fig.5 .
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Unlike what it is done in other methods (2), no attempt is made
here to minimize the band width, and the solution is basically the
Gauss elimination and back sustitution method, employing submatrixes as
computation units.

In spite of the large bandwidthsywhich could be present, the proce-
dure is efficient because:

1) One works only with half part of the matrix because of its: sym-
metry.

2) In computing the sucoesive reductions,all matrix products,hav-~
ing a zero matrix as one of its factors,are omitted. Thus, in
the first reduction of the system of Fig.5,in substraeting

from the second "row"the first "row" premultiplied by NTz Ni% >
only the following computations will be performed:
T <1 T -1
Nopm WMy Fpp 8 0= Fpp Fyy Fig
The submatrixes H23and Né4will remain unchanged ;and the compu-~
tations:s
T =1 T =1

Nyy= Fp, 350 3 Ny = N, §7 .0
are skipped.
In the same way the substraction,third "row"minus first "row"

premultiplied by N $3 N ;iis also skipped because N §3- 0, and

the third "row" remains thus unchanged.
In this way much computer time is saved and a good efficiency
is attained,

3. Type of blocks to be admitted by COBLO
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There are no restrictions regarding the shape and overlap of the
block . The strips can have completely different scales and positions .
Thus,it is possible to ad just simultaneously blocks formed by two or
more independent flights ,(Fig.6). The minimun block size is one model.

The mamber of unknown points per model participating in the ad just-
ment is arbitrary and can be rather large because they are stored exter—
nally. Each point has an identification number, by means of which the
program establishes the ties., The mumbering of tie and terrain points
is arbitrary. The perspective centres: act as additional tie points in
altimetry.

COBLO admits ground control points in arbitrary positions and their
number per model can be also large.

The ground control points ocan be planialtimetric,altimetric or pla-
nimetric.

No initial approximate values for the unknowns are required.

Some minor changes will be made in the future to introduce the use
of points along shorelines .

4. Data handling

The data handling is very easy because the plotting ingtrument out-
put can be used directly as input of COBLO. Each model card deck is
formed by the carda: of all model points (one card per point) grouped
arbitrarily. Preceding each model deck there is one card containing the
model coordinates of the two perspective centres and information about
the quantity of tie and ground control points.

The model decks thus formed are grouped sequentially (The same order
of measurement at the plotting instrument) to form the strip deck.

All strip decks are then grouped in an arbitrary way to form the
final data deck. Figure 7 shows one way to form the data deck of block
of Fig.6. Before each strip deck a ocard should be placed indicating
how many models the strip has.-

123455112345123456712345612123456712
STRIP 1 T STRIP 3 STRIP 4 STRIP 5 /'T STRIP 7 /T
STRIP 2 STRIP 6 STRIP 8
Fig.T

364.



Figure 8 shows a fictitious block of 6 models: 3 strips of 2 models
each. Supposing that all models were measured with the same base,the
scale of the third strip will differ strongly from the other two (the
factor is almost 3 ).

1 J302 J303
STRIP 2

IS
S

Fig.8

The simulated terrain is somewhat montaneous and all models were
taken out from their correct positions to prepare the fictitious input
data,by applying 3 translations and 3 rotations (orthogonal transforma~
tions). As no simulated errors were introduced,the final results of the
ad justment were ynaturally,exact.

Figure 9 is the input data of block of Fig.8. The first card oon-
tains information sbout the mmber of iterations (3 for montaneous
terrainy 2 for flat terrain) and the weight to be assigned to ground
control. The second card contains the block size (number of models) and
the number of strips. After these two specification cards,there
follows the above described data deck.

Figure 10 is the output of this example (the results of two iter -
ations are shown). Each line contains (from left to right ): the identi~
fication nmumber of the point, its three ad justed coordinates and the dis-
crepancies between these last coordinates and the transformed coordi-
nates of the same point in all models in which it appears. If the point
happens to be in more than 4 models;a second line will be necessary to
print all discrpancies (this is the case with point 202 which appears
in 6 models).

The treated example was included to show the data handling,but it
also shows how COBLO can process blocks with cross strips.
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5. Gross error detection

As centrgl memory requirements are not high, it could be inexpensive
to use COBLO for prewious strip formation and gross errors detection.
This stage is almost unavoidable when working with large blocks and it
turns out to be imperative in Bundles Ad justment for finding good initial
values for the unknowns (5). The printing of the discrepancies mentioned
in the last paragraph: and shown in Fig.l0 will be of great help at this

stage.
6. Central Memory requirements and CFU times

Regarding these two items it is diffiocult to compare our obsolete
IBM 1620 computer with modern ones.

A week spent by the author in Buenos Aires last december was hardly
enough to verify the FORTRAN IV version and to process some few blooks
(though translating FORTRAN II into FORTRAN IV seems to be simple,it is
an awkward task,specially if direct access instructions are present).
Nevertheless,some interesting conclusions could be drawn s
1) The program has only 900 FORTRAN instructions which require almost

30 K bytes in an IBM 370/125 computer.

2) The working area requirements depend,for the time being,on the blook
size: 50 models need 10 K bytes,100 models need 20 K bytes and 200
models need 40 K bytes . With very large blocks or very small compu-
ters special dynamic storage techmiigues; will be neceasary.

The program has been recently restidied and it seems not to be dif-

fioult to store externally all integer variable arrays which are
still in central memory. Thus,the central memory requirementss will
be independent of the block size and will not surpass 5 K bytes.

3) A proof carried out with a block of 20 models,with 3 plan height
iterations resulted in a CPU time of 18 seconds per model. According
to information obteined from IBM people in Tucumén,an IBM 370/125
is about 8 times slower than an IBM 370/145. Thus,the abowe mentioned
proof would take a CPU time of only 2 seconds per model in an
IBM 370/145, which is considered a good value if compared with CPU
times given in (7) amd (8).

7. Conclusion

The last version of our block adjustment program COBLO seems to be
promising because it can handle,in small computers,any type of block
regardless of shape,overlap and point distribution.

Several blockss of fiotitious and real data were already processed
with this program and a good performance was observed.

As most of the proofs were carried out at our old IBM 1620computer,
only small blocks were adjusted beocause the machine times in this: compu-
ter are extremely large for blocks of more than 20 models(it should be
born in mind that CPU $ime in an IBM 1620 ocan be more than 400 times
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greater than CPU time in an IBM 370/145).

Fortunately within few months and after many years of hard work,our

old IBM 1620 will give way to a very modern and powerful computer re -
cently acquired by our University. Then,we shall be able to carry out
proofs with large blibcksand to perform some research on subjects like,
gross error detection,control saving by using cross strips,blocks with
strips differing strongly in scale,etc.

(1)
(2)

(3)
(4)

(5)
(6)
(7)
(8)
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